If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2-10a+8=0
a = 1; b = -10; c = +8;
Δ = b2-4ac
Δ = -102-4·1·8
Δ = 68
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{68}=\sqrt{4*17}=\sqrt{4}*\sqrt{17}=2\sqrt{17}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{17}}{2*1}=\frac{10-2\sqrt{17}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{17}}{2*1}=\frac{10+2\sqrt{17}}{2} $
| 0.5x-25=2+5x | | 1/4(X+2)=1/3(2x+6) | | -16x=-17 | | -x2+10x-16=0 | | 5x-6=x-2+3 | | 28=7(3x+4)-21x | | 1/4t=418 | | a/87.5=25/100 | | 2x+6(x-1)=5x | | -5(-8x+3)=-215 | | 3+1.50+30=x | | X/3+9/4=5x/9+15/2 | | 5+y=73 | | 1/2x-60=2+5x | | 3+4s=39 | | 9h-25=2 | | 33+6x=3(5x-1) | | -2(-2x-1)=3(1-x) | | 25/100=a/7/8 | | 1=(-16)/3y | | 6x+39=-39 | | 2x+18=900-4x | | 5(x+1)+x=6x+5 | | 1/2(x-50)=2+5x | | 7-6x=7x+3 | | b^2+17b+49=3b | | 1.50x+19.00=2.75x+9.00 | | -3x+5(2x+1)=-16 | | -2+7x=5 | | -4y-5y=32 | | x-0.3x=500 | | 8(x+8)+x=4(x+5)+2 |